\qquad

Lesson 14 - Solids of Reviolution - Disks Math 16020

III Volume

Example 1. Find the volume of the solid that results by revolvig the region enclosed by the curves

$$
x=3-\frac{3}{5} x, \quad y=0, \quad \text { and } x=0
$$

around the y-axis.

Example 2. Find the volume of the solid that results by revolvig the region enclosed by the curves

$$
y=4 x-x^{2} \text { and the } x \text {-axis }
$$

around the x-axis.

Example 3. Set up an integral to find the volume or the solid. DO NOT evaluate the integral.
(a) The region enclosed by the curves $y=\csc (x), x=\frac{\pi}{6}, x=\frac{\pi}{2}$, and $y=0$ is revolved around the x-axis.
(b) The region in the first quadrant enclosed by the curves $y=x^{4}, y=16$, and $x=0$ is revolved around the y-axis.
(c) The solid obtained by rotating the ellipse $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{5^{2}}=1$ about the x-axis.
(d) The solid obtained by rotating the ellipse $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{5^{2}}=1$ about the y-axis.

III. 1 You try it!

Problem 4. Find the volume of the solid that results by revolvig the region enclosed by the curves

$$
y=x^{3}, \quad y=8, \quad \text { and } x=0
$$

around the y-axis. ANSWER: $\frac{96 \pi}{5}$.
(This is example 3 in Section 6.2 of Stewart's 8th edition Calculus: Early Trascendentals.)

