Lesson 14 - Solids of Reviolution - Disks Math 16020

III Volume

Example 1. Find the volume of the solid that results by revolvig the region enclosed by the curves

$$x = 3 - \frac{3}{5}x$$
, $y = 0$, and $x = 0$

around the y-axis.

Example 2. Find the volume of the solid that results by revolvig the region enclosed by the curves

 $y = 4x - x^2$ and the *x*-axis

around the x-axis.

Example 3. Set up an integral to find the volume or the solid. DO NOT evaluate the integral.

(a) The region enclosed by the curves $y = \csc(x)$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{2}$, and y = 0 is revolved around the x-axis.

(b) The region in the first quadrant enclosed by the curves $y = x^4$, y = 16, and x = 0 is revolved around the y-axis.

(c) The solid obtained by rotating the ellipse $\frac{x^2}{3^2} + \frac{y^2}{5^2} = 1$ about the *x*-axis.

(d) The solid obtained by rotating the ellipse $\frac{x^2}{3^2} + \frac{y^2}{5^2} = 1$ about the *y*-axis.

III.1 You try it!

Problem 4. Find the volume of the solid that results by revolvig the region enclosed by the curves

$$y = x^3$$
, $y = 8$, and $x = 0$

around the *y*-axis. **ANSWER:** $\frac{96\pi}{5}$.

(This is example 3 in Section 6.2 of Stewart's 8th edition Calculus: Early Trascendentals.)